ATEKO a.s.

1949 – 2019

Bonded Heat Exchanger

Bonded Heat Exchanger – Why

Nuclear technology development :

- Nuclear reactors, 4th generation
- Cooled by Helium
- Operating temperature 550 580 °C
- Operating pressure 7 MPa(g)
- Material solution limited by operating conditions and manufacture technology

Bonded Heat Exchanger – How

Possible Manufacture Methods:

- 1. Small specimen 3D print
- 2. Prototype bonding
- 3. Welding limited to connecting flanges at prototype

Bonded Heat Exchanger – How

Possible Materials:

- 1. Small specimen Inconel Alloy 718
- 2. Prototype AISI 316 Ti / WNr. 1.4571 and AISI 316L / WNr. 1.4404
- 3. Welding according to WPQR

Bonded Heat Exchanger – Small Specimen

Bonded Heat Exchanger – Prototype

Bonded Heat Exchanger – Bonding

Diffusion Bonding:

Solid-state diffusion welding of materials is a method of obtaining a monolithic bond, which is based on the formation of atomic bonds resulting from the maximum approximation of the surfaces to be joined and local plastic deformation at elevated temperature. This ensures diffusion in the surface layers of the joined materials

Bonded Heat Exchanger – Bonding

Diffusion Bonding Pros:

- No welding consumables
- It is possible to weld thin-walled and thick-walled materials
- It is possible to weld materials of the same or different chemical composition
- Zero loss of material
- No deformation of weldments
- No PWHT needed
- High productivity and automation application

Bonded Heat Exchanger – Bonding

Diffusion Bonding Cons:

- Weldment dimensions limited by vacuum chamber dimensions
- Vacuum chamber procurement requires costly investment
- Time demanding process
- Weldment surface needs thorough preparation

Bonded Heat Exchanger - Result

2nd Prototype pretesting washing WNr. 1.4404 Steel

Bonded Heat Exchanger – Testing Circuit

Bonded Heat Exchanger – Testing Circuit

AHELLO Testing Circuit:

- Gas-to-gas heat exhanger
- Water-to-gas plate heat exchanger
- Helium turbocirculator, 6 kW output
- Electric heater, 7 kW
- Temperature, pressure, flow
- Laminar and turbulent flow

Bonded Heat Exchanger – Testing Circuit

Bonded Heat Exchanger – Results

Overall Results:

- Both of 3D printed specimen and bonded prototype heat exhangers manufactured and tested
- Design process and manufacture technology verified
- Teoretical models verified by real measurement
- Applied materials tested on mechanical qualities
- Compact solution of gas-to-gas heat exchanger
- Ready for serial production by both of 3D print and bonded welding
- Ready for use in Helium cooled circuits

Thank you for your attention

http://www.ateko.cz

ateko@ateko.cz